Skip to contents

salmonMSE utilizes an age-structured model in the projections. The population is tracked by age and year but various dynamics correspond to the salmon life stages as described below.

Variable definitions

Definition of variable names and the corresponding slots in either the input (SOM) or output (SMSE) objects in salmonMSE.

Natural production

Name Definition Type Class Slot
NOS\textrm{NOS} Natural origin spawners Natural production SMSE NOS
FryNOS\textrm{Fry}^\textrm{NOS} Fry production by natural origin spawners, assumed to be equal to egg production Natural production SMSE Fry_NOS
SmoltNOS\textrm{Smolt}^\textrm{NOS} Smolt production by natural origin spawners, density-dependent Natural production SMSE Smolt_NOS
Cegg-smoltC_\textrm{egg-smolt} Carrying capacity of smolts (Beverton-Holt stock-recruit parameter) Natural production SOM, Bio capacity
SmaxS_\textrm{max} Spawning output that maximizes smolt production (Ricker stock-recruit parameter) Natural production SOM, Bio Smax
κ\kappa Productivity (maximum recruitment production rate), units of recruit per spawner Natural production SOM, Bio kappa
ϕ\phi Unfished per capita egg production rate, units of egg per smolt Natural production SOM, Bio phi
rr Maturity at age, i.e., recruitment rate Natural production SOM, Bio p_mature
Fec\textrm{Fec} Fecundity of spawners (eggs per female) Natural production SOM, Bio fec
pfemalep^\textrm{female} Proportion of female spawners in broodtake and spawners Natural production SOM, Bio p_female
SAR\textrm{SAR} Smolt-to-adult recruit survival Natural production - -
MM Juvenile instantaneous natural mortality of juvenile (either the freshwater or marine environment by age class) Natural production + Hatchery SOM, Bio Mjuv_NOS, Mjuv_HOS
senroutes_\textrm{enroute} Survival of escapement to spawning grounds and hatchery Natural production SOM, Bio s_enroute
NOR\textrm{NOR} Natural origin return Natural production SMSE Return_NOS
pHOSeffp_\textrm{HOSeff} Proportion of effective hatchery origin spawners (vs. NOS) Population dynamics SMSE pHOS_effective
pHOScensusp_\textrm{HOScensus} Proportion of hatchery origin spawners (vs. NOS) Population dynamics SMSE pHOS_census
pWILDp^\textrm{WILD} Proportion of wild spawners Population dynamics SMSE p_wild

Habitat

Name Definition Type Class Slot
PincP^\textrm{inc} Productivity for density-dependent survival: egg incubation from spawning output Habitat SOM egg_prod
CincC^\textrm{inc} Capacity for density-dependent survival: egg incubation from spawning output Habitat SOM egg_capacity
Pegg-fryP^\textrm{egg-fry} Productivity for density-dependent survival: egg to fry life stage Habitat SOM fry_prod
Cegg-fryC^\textrm{egg-fry} Capacity for density-dependent survival: egg to fry life stage Habitat SOM fry_capacity
εyegg-fry\varepsilon^\textrm{egg-fry}_y Deviations in density-dependent survival: egg to fry life stage Habitat SOM fry_sdev
Pfry-smoltP^\textrm{fry-smolt} Productivity for density-dependent survival: fry to smolt life stage Habitat SOM smolt_prod
Cfry-smoltC^\textrm{fry-smolt} Capacity for density-dependent survival: fry to smolt life stage Habitat SOM smolt_capacity
εyfry-smolt\varepsilon^\textrm{fry-smolt}_y Deviations in density-dependent survival: fry to smolt life stage Habitat SOM smolt_sdev

Hatchery

Name Definition Type Class Slot
HOS\textrm{HOS} Hatchery origin spawners Hatchery SMSE HOS
HOSeff\textrm{HOS}_\textrm{eff} Effective number of HOS, spawning output discounted by γ\gamma Hatchery SMSE HOSeff
FryHOS\textrm{Fry}^\textrm{HOS} Fry production by hatchery origin spawners, assumed to be equal to egg production Hatchery SMSE Fry_HOS
SmoltHOS\textrm{Smolt}^\textrm{HOS} Smolt production by hatchery origin spawners, density-dependent Hatchery SMSE Smolt_HOS
Fecbrood\textrm{Fec}^\textrm{brood} Fecundity of broodtake (eggs per female) Hatchery SOM fec_brood
MM Juvenile instantaneous natural mortality of juvenile (either the freshwater or marine environment by age class) Natural production + Hatchery SOM, Bio Mjuv_NOS, Mjuv_HOS
NOB\textrm{NOB} Natural origin broodtake Hatchery SMSE NOB
HOB\textrm{HOB} Hatchery origin broodtake Hatchery SMSE HOB
Stray\textrm{Stray} External strays of hatchery origin fish Hatchery SOM stray_external
HOB_stray\textrm{HOB_stray} Broodtake from strays Hatchery SMSE HOB_stray
syearlings_\textrm{yearling} Survival of hatchery eggs to yearling life stage Hatchery SOM s_egg_smolt
ssubyearlings_\textrm{subyearling} Survival of hatchery eggs to subyearling life stage Hatchery SOM s_egg_subyearling
pyearlingp_\textrm{yearling} Proportion of hatchery releases as yearling (vs. subyearling) Hatchery Internal state variable -
sprespawns_\textrm{prespawn} Survival of adult broodtake in hatchery Hatchery SOM s_prespawn
nyearlingn_\textrm{yearling} Target number of hatchery releases as yearlings Hatchery SOM n_yearling
nsubyearlingn_\textrm{subyearling} Target number of hatchery releases as subyearlings Hatchery SOM n_subyearling
mm Mark rate of hatchery fish Hatchery SOM m
pmaxescp^\textrm{esc}_\textrm{max} Maximum proportion of total escapement (after en-route mortality) to use as broodtake Hatchery SOM pmax_esc
ptargetNOBp^\textrm{NOB}_\textrm{target} Target proportion of the natural origin broodtake from the escapement (after en-route mortality), i.e., NOB/NOS ratio Hatchery SOM ptarget_NOB
pmaxNOBp^\textrm{NOB}_\textrm{max} Maximum proportion of the natural origin broodtake from the escapement (after en-route mortality), i.e., NOB/NOS ratio Hatchery SOM pmax_NOB
pNOBp_\textrm{NOB} Realized proportion of the total broodtake of hatchery origin (vs. natural origin) Hatchery SMSE pNOB
HOR\textrm{HOR} Hachery origin return Hatchery SMSE Return_HOS
phatcheryp^\textrm{hatchery} Proportion of hatchery origin escapement to hatchery, available for broodtake Hatchery SOM phatchery
premovalHOSp^\textrm{HOS}_\textrm{removal} Proportion of hatchery origin escapement removed from spawning grounds, not available for broodtake Hatchery SOM premove_HOS
γ\gamma Reduced reproductive success of HOS (relative to NOS) Hatchery SOM gamma
z\bar{z} Mean phenotypic value of cohort in natural and hatchery environments Fitness Internal state variable and SOM zbar_start
θ\theta Optimal phenotypic value for natural and hatchery environments Fitness SOM theta
σ2\sigma^2 Variance of phenotypic traits in population Fitness SOM phenotype_variance
ω2\omega^2 Variance of fitness function Fitness SOM fitness_variance
h2h^2 Heritability of phenotypic traits Fitness SOM heritability
W\bar{W} Population fitness in the natural and hatchery environments Fitness SMSE fitness
i\ell_i Relative fitness loss at the life stage i (egg, fry, smolt) Fitness SOM rel_loss
PNI\textrm{PNI} Proportionate natural influence Fitness SMSE PNI

Harvest

Name Definition Type Class Slot
mm Mark rate of hatchery fish (affects fishery retention of hatchery fish relative to natural fish) Harvest SOM m
uPTu^\textrm{PT} Pre-terminal fishery harvest rate Harvest SOM u_preterminal
uTu^\textrm{T} Terminal fishery harvest rate Harvest SOM u_terminal
δ\delta Mortality from catch and release (proportion) Harvest SOM release_mort
vv Relative vulnerability by age to the fishery Harvest SOM vulPT, vulT

Natural production

First, we consider natural production in the absence of fitness effects arising from hatchery production.

Spawning output

From the spawners (NOS and HOS) of age aa in year yy, the corresponding spawning output (units of eggs) of the subsequent generation is calculated as:

EggyNOS=aNOSy,a×pfemale×FecaEggyHOS=aHOSeffy,a×pfemale×Feca\begin{align} \textrm{Egg}^\textrm{NOS}_y &= \sum_a\textrm{NOS}_{y,a} \times p^\textrm{female} \times \textrm{Fec}_a\\ \textrm{Egg}^\textrm{HOS}_y &= \sum_a\textrm{HOS}_{\textrm{eff}y,a} \times p^\textrm{female} \times \textrm{Fec}_a \end{align}

where HOSeff=γ×HOS\textrm{HOS}_{\textrm{eff}} = \gamma \times \textrm{HOS} and the superscript denotes the parentage of the progeny.

Smolt production - no habitat modeling

If no habitat modeling is used, then fry production is assumed to be equal to spawning output, i.e., Fryy+1NOS=EggyNOS\textrm{Fry}^\textrm{NOS}_{y+1} = \textrm{Egg}^\textrm{NOS}_y and Fryy+1HOS=EggyHOS\textrm{Fry}^\textrm{HOS}_{y+1} = \textrm{Egg}^\textrm{HOS}_y.

Survival from egg to smolt life stage is density-dependent. With the Beverton-Holt stock-recruit relationship, the age-1 smolt production is

Smolty+1NOS=α×Fryy+1NOS1+β(Fryy+1NOS+Fryy+1HOS+ny+1sub)Smolty+1HOS=α×Fryy+1HOS1+β(Fryy+1NOS+Fryy+1HOS+ny+1sub)\begin{align} \textrm{Smolt}^\textrm{NOS}_{y+1} &= \frac{\alpha \times \textrm{Fry}^\textrm{NOS}_{y+1}}{1 + \beta(\textrm{Fry}^\textrm{NOS}_{y+1} + \textrm{Fry}^\textrm{HOS}_{y+1} + n^\textrm{sub}_{y+1})}\\ \textrm{Smolt}^\textrm{HOS}_{y+1} &= \frac{\alpha \times \textrm{Fry}^\textrm{HOS}_{y+1}}{1 + \beta(\textrm{Fry}^\textrm{NOS}_{y+1} + \textrm{Fry}^\textrm{HOS}_{y+1} + n^\textrm{sub}_{y+1})} \end{align}

where α=κ/ϕ\alpha = \kappa/\phi, β=α/Cegg-smolt\beta = \alpha/{C_\textrm{egg-smolt}}, the unfished egg per smolt ϕ=a(i=1a1exp(MiNOS)(1ri))×ra×pfemale×Feca\phi = \sum_a\left(\prod_{i=1}^{a-1}\exp(-M^\textrm{NOS}_i)(1-r_i)\right)\times r_a \times p^\textrm{female} \times \textrm{Fec}_a, with rar_a as the maturity at age.

Smolt production can be predicted from total adult spawners by setting Feca=1\textrm{Fec}_a = 1 and ϕ=1\phi = 1.

The density-independent component of the survival equation is controlled by α\alpha and the density-dependent component of survival is controlled by β\beta and scaled by the total number of fry in competition with subyearling hatchery releases (see Hatchery section).

If there is knife-edge maturity, i.e., all fish mature at the terminal age, the equation simplifies to ϕ=SAR×pfemale×Fec\phi = \textrm{SAR} \times p^\textrm{female} \times \textrm{Fec}, with SAR\textrm{SAR} as the marine survival (between 0-1).

With the Ricker stock-recruit relationship, smolt production is

Smolty+1NOS=α×Fryy+1NOS×exp(β[Fryy+1NOS+Fryy+1HOS+ny+1sub])Smolty+1HOS=α×Fryy+1HOS×exp(β[Fryy+1NOS+Fryy+1HOS+ny+1sub])\begin{align} \textrm{Smolt}^\textrm{NOS}_{y+1} &= \alpha \times \textrm{Fry}^\textrm{NOS}_{y+1}\times\exp(-\beta[\textrm{Fry}^\textrm{NOS}_{y+1} + \textrm{Fry}^\textrm{HOS}_{y+1} + n^\textrm{sub}_{y+1}])\\ \textrm{Smolt}^\textrm{HOS}_{y+1} &= \alpha \times \textrm{Fry}^\textrm{HOS}_{y+1}\times\exp(-\beta[\textrm{Fry}^\textrm{NOS}_{y+1} + \textrm{Fry}^\textrm{HOS}_{y+1} + n^\textrm{sub}_{y+1}]) \end{align}

where α=κ/ϕ\alpha = \kappa/\phi and β=1/Smax\beta = 1/{S_\textrm{max}}, SmaxS_\textrm{max} is the egg production that maximizes smolt production.

Smolt production - habitat modeling

Egg to smolt production can also be modeled as a series of density-dependent functions by life stage, following the approach of Jorgensen et al. 2021. Three relationships are modeled.

The realized egg production (Egg̃y\widetilde{\textrm{Egg}}_y) can be modified from the spawning output (Eggy\textrm{Egg}_y) due to incubation mortality. With a Beverton-Holt function:

Egg̃yNOS=Pinc×EggyNOS1+PincCinc(EggyNOS+EggyHOS)Egg̃yHOS=Pinc×EggyHOS1+PincCinc(EggyNOS+EggyHOS)\begin{align} \widetilde{\textrm{Egg}}^\textrm{NOS}_y &= \frac{P^\textrm{inc} \times \textrm{Egg}^\textrm{NOS}_y}{1 + \frac{P^\textrm{inc}}{C^\textrm{inc}}(\textrm{Egg}^\textrm{NOS}_y + \textrm{Egg}^\textrm{HOS}_y)}\\ \widetilde{\textrm{Egg}}^\textrm{HOS}_y &= \frac{P^\textrm{inc} \times \textrm{Egg}^\textrm{HOS}_y}{1 + \frac{P^\textrm{inc}}{C^\textrm{inc}}(\textrm{Egg}^\textrm{NOS}_y + \textrm{Egg}^\textrm{HOS}_y)} \end{align}

where productivity PP is the maximum survival as spawning output approaches zero and CC is the asymptotic production.

Set the capacity to infinite to model density-independence. The productivity parameter is then the survival to the next life stage.

Fry production is modeled as:

Fryy+1NOS=Pegg-fry×Egg̃yNOS1+Pegg-fryCegg-fry(Egg̃yNOS+Egg̃yHOS)×εyegg-fryFryy+1HOS=Pegg-fry×Egg̃yHOS1+Pegg-fryCegg-fry(Egg̃yNOS+Egg̃yHOS)×εyegg-fry\begin{align} \textrm{Fry}^\textrm{NOS}_{y+1} &= \frac{P^\textrm{egg-fry} \times \widetilde{\textrm{Egg}}^\textrm{NOS}_y}{1 + \frac{P^\textrm{egg-fry}}{C^\textrm{egg-fry}}(\widetilde{\textrm{Egg}}^\textrm{NOS}_y + \widetilde{\textrm{Egg}}^\textrm{HOS}_y)} \times \varepsilon^\textrm{egg-fry}_y\\ \textrm{Fry}^\textrm{HOS}_{y+1} &= \frac{P^\textrm{egg-fry} \times \widetilde{\textrm{Egg}}^\textrm{HOS}_y}{1 + \frac{P^\textrm{egg-fry}}{C^\textrm{egg-fry}}(\widetilde{\textrm{Egg}}^\textrm{NOS}_y + \widetilde{\textrm{Egg}}^\textrm{HOS}_y)} \times \varepsilon^\textrm{egg-fry}_y \end{align}

where εyegg-fry\varepsilon^\textrm{egg-fry}_y is a year-specific deviation in survival. They can be modeled as a function of a proposed time series of environmental variables η\eta, for example, εyegg-fry=jf(ηy,j)\varepsilon^\textrm{egg-fry}_y = \prod_j f(\eta_{y,j}) or εyegg-fry=jf(ηy,j)\varepsilon^\textrm{egg-fry}_y = \sum_j f(\eta_{y,j}).

Similarly, smolt production is modeled as:

SmoltyNOS=Pfry-smolt×FryyNOS1+Pfry-smoltCfry-smolt(FryyNOS+FryyHOS)×εyfry-smoltSmoltyHOS=Pfry-smolt×FryyHOS1+Pfry-smoltCfry-smolt(FryyNOS+FryyHOS)×εyfry-smolt\begin{align} \textrm{Smolt}^\textrm{NOS}_y &= \frac{P^\textrm{fry-smolt} \times \textrm{Fry}^\textrm{NOS}_y}{1 + \frac{P^\textrm{fry-smolt}}{C^\textrm{fry-smolt}}(\textrm{Fry}^\textrm{NOS}_y + \textrm{Fry}^\textrm{HOS}_y)} \times \varepsilon^\textrm{fry-smolt}_y\\ \textrm{Smolt}^\textrm{HOS}_y &= \frac{P^\textrm{fry-smolt} \times \textrm{Fry}^\textrm{HOS}_y}{1 + \frac{P^\textrm{fry-smolt}}{C^\textrm{fry-smolt}}(\textrm{Fry}^\textrm{NOS}_y + \textrm{Fry}^\textrm{HOS}_y)} \times \varepsilon^\textrm{fry-smolt}_y \end{align}

Alternative scenarios with changes in productivity or capacity parameters can be used to evaluate changes in life stage survival from habitat improvement or mitigation measures as part of a management strategy, or from climate regimes (low productivity vs. high productivity, or low capacity vs. high capacity). An increase in capacity can arise from restoration which increases the area of suitable habitat. An increase in productivity can arise from improvement in habitat, e.g., sediment quality.

Approaches such as HARP and CEMPRA can inform productivity and capacity parameters across these life stages as quantitative relationships between habitat variables.

For all life stages, a hockey-stick formulation is also possible. For example:

Egg̃yNOS={Pinc×EggyNOS,EggyNOSCyinc*/PincCyinc*,otherwise \widetilde{\textrm{Egg}}^\textrm{NOS}_y = \begin{cases} P^\textrm{inc} \times \textrm{Egg}^\textrm{NOS}_y &, \textrm{Egg}^\textrm{NOS}_y \le C^\textrm{inc*}_y/P^\textrm{inc}\\ C^\textrm{inc*}_y &, \textrm{otherwise}\\ \end{cases}

where Cyinc*=Cinc×EggyNOS/(EggyNOS+EggyHOS)C^\textrm{inc*}_y = C^\textrm{inc} \times \textrm{Egg}^\textrm{NOS}_y/(\textrm{Egg}^\textrm{NOS}_y + \textrm{Egg}^\textrm{HOS}_y) is the capacity apportioned to natural spawners based on relative abundance.

Hatchery production

Hatchery production is controlled by several sets of variables specified by the analyst, roughly following the AHA approach.

The first consideration is to specify the target number of annual releases of sub-yearlings ntargetsubyearlingn^\textrm{subyearling}_\textrm{target} and yearlings ntargetyearlingn^\textrm{yearling}_\textrm{target}.

Yearlings are intended to represent hatchery releases that immediately leave freshwater environment, while subyearlings are subject to density-dependent survival in competition with natural production of fry, e.g., they reside in freshwater environment for a period of time before leaving.

Going backwards, the corresponding number of eggs needed to reach the target number depends on the egg survival to those life stages in the hatchery. The corresponding number of broodtake is calculated from target egg production based on the brood fecundity and hatchery survival of broodtake, which is non-selective with respect to age.

An additional consideration is the composition (natural vs. hatchery origin) of in-river broodtake. To minimize genetic drift of the population due to hatchery production, it is desirable to maintain a high proportion of natural origin broodtake. This is controlled by ptargetNOBp^\textrm{NOB}_\textrm{target}, the desired proportion of natural broodtake relative to all broodtake (any specified amount of available imported brood is considered hatchery-origin for this purpose), but can be exceeded if there is insufficient escapement of natural origin fish.

The ability to meet this target depends on the mark rate of hatchery origin fish. Thus, ptargetNOBp^\textrm{NOB}_\textrm{target} represents ratio of unmarked fish in the projection (imported brood is considered marked for this calculation, strays are considered unmarked), and the realized pNOBp^\textrm{NOB} is reduced by the mark rate.

Another consideration for broodtake dynamics is to maintain high spawning of natural origin fish. This is controlled by pmaxNOBp^\textrm{NOB}_\textrm{max}, the maximum allowable proportion of the natural origin escapement to be used as broodtake. This value is never exceeded.

To set up a segregated hatchery program, set pmaxNOB=0p^\textrm{NOB}_\textrm{max} = 0. Otherwise, these equations set up an integerated hatchery.

The following equations then generate the annual broodtake and hatchery production from the state variables given these constraints.

Broodtake

The annual target egg production for the hatchery is calculated from the target releases as

Eggtarget,broodtake=ntargetyearlingsyearling+ntargetsubyearlingssubyearling \textrm{Egg}_\textrm{target,broodtake} = \dfrac{n^\textrm{yearling}_\textrm{target}}{s^\textrm{yearling}} + \dfrac{n^\textrm{subyearling}_\textrm{target}}{s^\textrm{subyearling}}

where ss is the corresponding survival term from the egg life stage.

The broodtake is back-calculated from the target egg production. The composition of natural and hatchery origin broodtake (NOB and HOB, respectively) is dependent on the mark rate mm and the target proportion of NOB ptargetNOBp^\textrm{NOB}_\textrm{target}. When the mark rate is 1, then the realized pNOB should be equal to ptargetNOBp^\textrm{NOB}_\textrm{target} provided there is sufficient escapement. If the mark rate is less than one, then ptargetNOBp^\textrm{NOB}_\textrm{target} reflects the proportion of unmarked fish in the broodtake, some which are hatchery origin. Thus, the realized pNOB is less than ptargetNOBp^\textrm{NOB}_\textrm{target}. If the mark rate is zero, then broodtake is non-selective with pNOB equal to the proportion of natural origin escapement.

From the escapement in year yy, some proportion pbroodtakep^\textrm{broodtake} is used as broodtake:

NOBy,a=pybroodtake,unmarked×NORy,aescapement×senroute×pmaxescHOBy,aunmarked=pybroodtake,unmarked×(1m)×phatchery×HORy,aescapement×senroute×pmaxescHOBy,amarked=pybroodtake,marked×m×phatchery×HORy,aescapement×senroute×pmaxesc\begin{align} \textrm{NOB}_{y,a} &= p^\textrm{broodtake,unmarked}_y \times \textrm{NOR}^\textrm{escapement}_{y,a} \times s_\textrm{enroute} \times p^\textrm{esc}_\textrm{max}\\ \textrm{HOB}^\textrm{unmarked}_{y,a} &= p^\textrm{broodtake,unmarked}_y \times (1-m) \times p^\textrm{hatchery} \times \textrm{HOR}^\textrm{escapement}_{y,a} \times s_\textrm{enroute} \times p^\textrm{esc}_\textrm{max}\\ \textrm{HOB}^\textrm{marked}_{y,a} &= p^\textrm{broodtake,marked}_y \times m \times p^\textrm{hatchery} \times \textrm{HOR}^\textrm{escapement}_{y,a} \times s_\textrm{enroute} \times p^\textrm{esc}_\textrm{max} \end{align}

The proportion of the available hatchery fish for broodtake is also reduced by phatcheryp^\textrm{hatchery}, which can include fish swimming back to the hatchery or removed from spawning grounds.

Additionally, some proportion of imported fish and strays may be used as brood:

Broody,aimport=pybroodtake,markedaBroodaavail,importHOBy,astray=pybroodtake,unmarked×Strayy,a×senroute\begin{align} \textrm{Brood}^\textrm{import}_{y,a} &= p^\textrm{broodtake,marked}_y \sum_a \textrm{Brood}^\textrm{avail,import}_a\\ \textrm{HOB}^\textrm{stray}_{y,a} &= p^\textrm{broodtake,unmarked}_y \times \textrm{Stray}_{y,a} \times s_\textrm{enroute} \\ \end{align}

The availability of both natural and hatchery origin fish depends on the escapement reduced by en-route mortality and can be capped by some proportion denoted by the pmaxescp^\textrm{esc}_\textrm{max} parameter.

To exclusively use imported brood, set pmaxesc=0p^\textrm{esc}_\textrm{max} = 0.

The realized hatchery egg production is

EggyNOB=aNOBy,a×sprespawn×pfemale×FecabroodEggyHOB=a(HOBy,amarked+HOBy,aunmarked)×sprespawn×pfemale×FecabroodEggyimport=aBroody,aimport×sprespawn×pfemale×FecabroodEggystray=aHOBy,astray×sprespawn×pfemale×Fecabrood\begin{align} \textrm{Egg}_\textrm{y}^\textrm{NOB} &= \sum_a \textrm{NOB}_{y,a} \times s^\textrm{prespawn} \times p^\textrm{female} \times \textrm{Fec}^\textrm{brood}_a\\ \textrm{Egg}_\textrm{y}^\textrm{HOB} &= \sum_a (\textrm{HOB}^\textrm{marked}_{y,a} + \textrm{HOB}^\textrm{unmarked}_{y,a}) \times s^\textrm{prespawn} \times p^\textrm{female} \times \textrm{Fec}^\textrm{brood}_a\\ \textrm{Egg}_\textrm{y}^\textrm{import} &= \sum_a \textrm{Brood}^\textrm{import}_{y,a} \times s^\textrm{prespawn} \times p^\textrm{female} \times \textrm{Fec}^\textrm{brood}_a\\ \textrm{Egg}_\textrm{y}^\textrm{stray} &= \sum_a \textrm{HOB}^\textrm{stray}_{y,a} \times s^\textrm{prespawn} \times p^\textrm{female} \times \textrm{Fec}^\textrm{brood}_a\\ \end{align}

where hatchery egg production is subject to a survival term sprespawns^\textrm{prespawn}.

The proportion pybroodtakep^\textrm{broodtake}_y is solved annually to satisfy the following conditions:

a(NOBy,a+HOBy,aunmarked+HOBy,astray)a(NOBy,a+HOBy,aunmarked+HOBy,amarked+HOBy,astray+Broody,aimport)=ptargetNOB\dfrac{\sum_a(\textrm{NOB}_{y,a} + \textrm{HOB}^\textrm{unmarked}_{y,a} + \textrm{HOB}^\textrm{stray}_{y,a})}{\sum_a(\textrm{NOB}_{y,a} + \textrm{HOB}^\textrm{unmarked}_{y,a} + \textrm{HOB}^\textrm{marked}_{y,a} + \textrm{HOB}^\textrm{stray}_{y,a} + \textrm{Brood}^\textrm{import}_{y,a})} = p^\textrm{NOB}_\textrm{target}

0<pybroodtake,marked10 < p^\textrm{broodtake,marked}_y \le 1

0<pybroodtake,unmarkedpmaxNOB0 < p^\textrm{broodtake,unmarked}_y \le p^\textrm{NOB}_\textrm{max}

EggyNOB+EggyHOB+Eggyimport+Eggystray=Eggbroodtake\textrm{Egg}_\textrm{y}^\textrm{NOB} + \textrm{Egg}_\textrm{y}^\textrm{HOB} + \textrm{Egg}_\textrm{y}^\textrm{import} + \textrm{Egg}^\textrm{stray}_y = \textrm{Egg}_\textrm{broodtake}

The target ratio ptargetNOBp^\textrm{NOB}_\textrm{target} reflects the objective to maintain a high proportion of natural origin fish in the broodtake, where its implementation is dependent on the mark rate. The maximum removal rate of natural origin fish pmaxNOBp^\textrm{NOB}_\textrm{max} or escapement pmaxescp^\textrm{esc}_\textrm{max} ensures that there is high abundance of natural origin spawners.

The total egg production in a given year can fail to reach the target if there is insufficient unmarked escapement. In this case, the unmarked take is set to the maximum removal rate (pybroodtake,unmarked=pmaxNOBp^\textrm{broodtake,unmarked}_y = p^\textrm{NOB}_\textrm{max}), and the remaining deficit in egg production is met using HOB (including strays and imports).

Smolt releases

After the total hatchery egg production is calculated, the production of yearlings and subyearlings is calculated to ensure the annual ratio is equal to the target ratio. To do so, the parameter pyegg,yearlingp^\textrm{egg,yearling}_y is solved subject to the following conditions:

Eggbrood,y=EggyNOB+EggyHOB+Eggyimport+Eggystray\textrm{Egg}_\textrm{brood,y} = \textrm{Egg}_\textrm{y}^\textrm{NOB} + \textrm{Egg}_\textrm{y}^\textrm{HOB} + \textrm{Egg}^\textrm{import}_y + \textrm{Egg}^\textrm{stray}_y

ny+1yearling=pyegg,yearling×Eggbrood,y×syearlingn^\textrm{yearling}_{y+1} = p^\textrm{egg,yearling}_y \times \textrm{Egg}_\textrm{brood,y} \times s^\textrm{yearling}

ny+1subyearling=(1pyegg,yearling)×Eggbrood,y×ssubyearlingn^\textrm{subyearling}_{y+1} = (1 - p^\textrm{egg,yearling}_y) \times \textrm{Egg}_\textrm{brood,y} \times s^\textrm{subyearling}

nyyearlingnysubyearling+nyyearling=ntargetyearlingntargetsubyearling+ntargetyearling\frac{n^\textrm{yearling}_y}{n^\textrm{subyearling}_y + n^\textrm{yearling}_y} = \frac{n^\textrm{yearling}_\textrm{target}}{n^\textrm{subyearling}_\textrm{target} + n^\textrm{yearling}_\textrm{target}}

From the total broodtake, the smolt releases is calculated as

Smolty+1Rel=ny+1yearling+α×ny+1subyearling1+β(Fryy+1NOS+Fryy+1HOS+ny+1subyearling) \textrm{Smolt}^\textrm{Rel}_{y+1} = n^\textrm{yearling}_{y+1} + \frac{\alpha \times n^\textrm{subyearling}_{y+1}}{1 + \beta(\textrm{Fry}^\textrm{NOS}_{y+1} + \textrm{Fry}^\textrm{HOS}_{y+1} + n^\textrm{subyearling}_{y+1})}

or

Smolty+1Rel=ny+1yearling+α×ny+1subyearling×exp(β(Fryy+1NOS+Fryy+1HOS+ny+1subyearling)) \textrm{Smolt}^\textrm{Rel}_{y+1} = n^\textrm{yearling}_{y+1} + \alpha \times n^\textrm{subyearling}_{y+1} \times \exp(-\beta(\textrm{Fry}^\textrm{NOS}_{y+1} + \textrm{Fry}^\textrm{HOS}_{y+1} + n^\textrm{subyearling}_{y+1}))

Pre-terminal fishery

Let Ny,ajuvN^\textrm{juv}_{y,a} be the juvenile abundance in the population and Ny,a=1juv,NOS=SmoltyNOS+SmoltyHOSN^\textrm{juv,NOS}_{y,a=1} = \textrm{Smolt}^\textrm{NOS}_y + \textrm{Smolt}^\textrm{HOS}_y and Ny,a=1juv,HOS=SmoltRelN^\textrm{juv,HOS}_{y,a=1} = \textrm{Smolt}^\textrm{Rel}. The superscript for the smolt variable corresponds to the parentage while the superscript for NN denotes the origin of the current cohort.

Harvest uPTu^\textrm{PT} in the pre-terminal (PT\textrm{PT}) fishery, assuming no mark-selective fishing, is modeled as a seasonal process. The kept catch KK is

Ky,aNOS,PT=(1exp(vaPTFyPT))Ny,ajuv,NOSKy,aHOS,PT=(1exp(vaPTFyPT))Ny,ajuv,HOS\begin{align} K^\textrm{NOS,PT}_{y,a} &= \left(1 - \exp(-v^\textrm{PT}_a F^\textrm{PT}_y)\right)N^\textrm{juv,NOS}_{y,a}\\ K^\textrm{HOS,PT}_{y,a} &= \left(1 - \exp(-v^\textrm{PT}_a F^\textrm{PT}_y)\right)N^\textrm{juv,HOS}_{y,a}\\ \end{align}

The instantaneous fishing mortality is solved so that the ratio of the total catch and the total vulnerable abundance is equal to the specified harvest rate:

uPT=aKy,aNOS,PT+aKy,aHOS,PTavaPT(Ny,ajuv,NOS+Ny,ajuv,HOS) u^\textrm{PT} = \dfrac{\sum_a K^\textrm{NOS,PT}_{y,a} + \sum_a K^\textrm{HOS,PT}_{y,a}}{\sum_a v^\textrm{PT}_a (N^\textrm{juv,NOS}_{y,a} + N^\textrm{juv,HOS}_{y,a})}

Recruitment and maturity

The recruitment is calculated from the survival of juvenile fish after pre-terminal harvest and maturation:

NORy,a=Ny,ajuv,NOSexp(vaFyPT)ry,aHORy,a=Ny,ajuv,HOSexp(vaFyPT)ry,a\begin{align} \textrm{NOR}_{y,a} &= N^\textrm{juv,NOS}_{y,a}\exp(-v_aF^\textrm{PT}_y)r_{y,a}\\ \textrm{HOR}_{y,a} &= N^\textrm{juv,HOS}_{y,a}\exp(-v_aF^\textrm{PT}_y)r_{y,a} \end{align}

The juvenile abundance in the following year consists of fish that did not mature and subsequently survived natural mortality MM:

Ny+1,a+1juv,NOS=Ny,ajuv,NOSexp([vaFyPT+My,aNOS])(1ry,a)Ny+1,a+1juv,HOS=Ny,ajuv,HOSexp([vaFyPT+My,aHOS])(1ry,a)\begin{align} N^\textrm{juv,NOS}_{y+1,a+1} &= N^\textrm{juv,NOS}_{y,a}\exp\left(-[v_aF^\textrm{PT}_y + M^\textrm{NOS}_{y,a}]\right)(1 - r_{y,a})\\ N^\textrm{juv,HOS}_{y+1,a+1} &= N^\textrm{juv,HOS}_{y,a}\exp\left(-[v_aF^\textrm{PT}_y + M^\textrm{HOS}_{y,a}]\right)(1 - r_{y,a}) \end{align}

Natural mortality is specified by age class. Accordingly, this mortality corresponds to either the freshwater or marine survival depending on age class.

Terminal fishery

Assuming no mark-selective fishing, the retained catch of the terminal (T\textrm{T}) fishery is calculated from the harvest rate similarly as with the pre-terminal fishery:

Ky,aNOS,T=(1exp(vaTFyT))NORy,aKy,aHOS,T=(1exp(vaTFyT))HORy,a\begin{align} K^\textrm{NOS,T}_{y,a} &= \left(1 - \exp(-v^\textrm{T}_a F^\textrm{T}_y)\right)\textrm{NOR}_{y,a}\\ K^\textrm{HOS,T}_{y,a} &= \left(1 - \exp(-v^\textrm{T}_a F^\textrm{T}_y)\right)\textrm{HOR}_{y,a}\\ \end{align}

subject to

uT=aKy,aNOS,T+aKy,aHOS,TavaT(NORy,a+HORy,a) u^\textrm{T} = \dfrac{\sum_a K^\textrm{NOS,T}_{y,a} + \sum_a K^\textrm{HOS,T}_{y,a}}{\sum_a v^\textrm{T}_a(\textrm{NOR}_{y,a} + \textrm{HOR}_{y,a})}

Escapement and spawners

The escapement consists of the survivors of the terminal fishery:

NORy,aescapement=NORy,aexp(vaFyT)HORy,aescapement=HORy,aexp(vaFyT)\begin{align} \textrm{NOR}^\textrm{escapement}_{y,a} &= \textrm{NOR}_{y,a}\exp(-v_aF^\textrm{T}_y)\\ \textrm{HOR}^\textrm{escapement}_{y,a} &= \textrm{HOR}_{y,a}\exp(-v_aF^\textrm{T}_y) \end{align}

The abundance of natural origin spawners consists of the escapement that survive migration to the spawning ground (senroutes_\textrm{enroute}) and are not removed for brood:

NOSy,a=NORy,aescapement×senrouteNOBy,a \textrm{NOS}_{y,a} = \textrm{NOR}^\textrm{escapement}_{y,a} \times s_\textrm{enroute} - \textrm{NOB}_{y,a}

The hatchery origin spawners is the escapement of local origin that survive migration, do not return to the hatchery (either by swim-in facilities or in-river collection), and are not removed from the spawning ground (through proportion premovalHOSp^\textrm{HOS}_\textrm{removal} and discounted by the mark rate, these animals are not available for brood). Strays not used for brood are also included as hatchery spawners.

HOSy,a=HOSy,alocal+HOSy,astray=(1phatchery)(1premovalHOS×m)HORy,aescapement×senroute+(Strayy,aHOBy,astray)\begin{align} \textrm{HOS}_{y,a} &= \textrm{HOS}^\textrm{local}_{y,a} + \textrm{HOS}^\textrm{stray}_{y,a}\\ &= (1 - p^\textrm{hatchery}) (1 - p^\textrm{HOS}_\textrm{removal} \times m) \textrm{HOR}^\textrm{escapement}_{y,a} \times s_\textrm{enroute} + (\textrm{Stray}_{y,a} - \textrm{HOB}^\textrm{stray}_{y,a}) \end{align}

Fitness effects on survival

Reproductive success of first generation hatchery fish has been observed to be lower than their natural counterparts, and is accounted for in the γ\gamma parameter (see review in Withler et al. 2018).

Through genetic and epigenetic factors, survival of hatchery juveniles in the hatchery environment selects for fish with a phenotype best adapted for that environment, and likewise for juveniles spawned in the natural environment. Since these traits are heritable, the fitness of the natural population can shift away from the optimum for the natural environment towards that of the hatchery environment on an evolutionary time scale, i.e., over a number of generations, when hatchery fish are allowed to spawn.

As described in Ford 2002 and derived in Lande 1976, the fitness loss function WW for an individual with phenotypic trait value zz in a given environment is

W(z)=exp((zθ)22ω2) W(z) = \exp\left(\dfrac{-(z-\theta)^2}{2\omega^2}\right)

where θ\theta is the optimum for that environment and ω2\omega^2 is the fitness variance.

If the phenotypic trait value zz in the population is a random normal variable with mean z\bar{z} and variance σ2\sigma^2, then the mean fitness of the population in generation gg is W(z)=W(z)f(z)dz\bar{W}(z) = \int W(z) f(z) dz, where f(z)f(z) is the Gaussian probability density function. The solution is proportional to

W(z)exp((zθ)22(ω2+σ2)) \bar{W}(z) \propto \exp\left(\dfrac{-(\bar{z}-\theta)^2}{2(\omega^2+\sigma^2)}\right)

The mean phenotype z\bar{z} is calculated iteratively, where the change Δz\Delta\bar{z} from generation g1g-1 to gg is

Δz=zgzg1=(zg1zg1)h2zg=zg1+(zg1zg1)h2\begin{align} \Delta\bar{z} &= \bar{z}_g - \bar{z}_{g-1} = (\bar{z}^\prime_{g-1} - \bar{z}_{g-1})h^2\\ \bar{z}_g &= \bar{z}_{g-1} + (\bar{z}^\prime_{g-1} - \bar{z}_{g-1})h^2\\ \end{align}

where h2h^2 is the heritability of zz and zg1\bar{z}^\prime_{g-1} is the trait value after applying the fitness function, defined as:

zg1=1Wg1Wg1(z)×zf(z)dz=zg1ω2+θσ2ω2+σ2\begin{align} \bar{z}^\prime_{g-1} &= \dfrac{1}{\bar{W}_{g-1}}\int W_{g-1}(z)\times zf(z)dz\\ &= \dfrac{\bar{z}_{g-1}\omega^2 + \theta \sigma^2}{\omega^2 + \sigma^2} \end{align}

Let zg1(θ)\bar{z}^\prime_{g-1}(\theta) be a function that returns the mean trait value after selection in an environment with optimum value θ\theta. With a hatchery program, the mean trait value of the progeny in the natural environment is a weighted average of the mean trait value in natural and hatchery origin spawners, with selection in the natural environment, i.e., with optimum trait value θnatural\theta^\textrm{natural}:

zgnatural=(1pg1HOSeff)×(zg1natural+[zg1natural(θnatural)zg1natural]h2)+pg1HOSeff×(zg1hatchery+[zg1hatchery(θnatural)zg1hatchery]h2)\begin{align} \bar{z}^\textrm{natural}_g = & (1 - p^\textrm{HOSeff}_{g-1}) \times \left(\bar{z}^\textrm{natural}_{g-1} + [\bar{z}^{\prime\textrm{natural}}_{g-1}(\theta^\textrm{natural}) - \bar{z}^\textrm{natural}_{g-1}] h^2\right) +\\ & p^\textrm{HOSeff}_{g-1} \times \left(\bar{z}^\textrm{hatchery}_{g-1} + [\bar{z}^{\prime\textrm{hatchery}}_{g-1}(\theta^\textrm{natural}) - \bar{z}^\textrm{hatchery}_{g-1}] h^2\right) \end{align}

where pHOSeff=γ×HOS/(NOS+γ×HOS)p^\textrm{HOSeff} = \gamma\times\textrm{HOS}/(\textrm{NOS} + \gamma\times\textrm{HOS}).

Similarly, the mean trait value in the hatchery environment zghatchery\bar{z}^\textrm{hatchery}_g is a weighted average of the mean trait value of the natural and hatchery broodtake, with selection in the hatchery environment, i.e., with optimum trait value θhatchery\theta^\textrm{hatchery}:

zghatchery=pg1NOB×(zg1natural+[zg1natural(θhatchery)zg1natural]h2)+(1pg1NOB)×(zg1hatchery+[zg1hatchery(θhatchery)zg1hatchery]h2)\begin{align} \bar{z}^\textrm{hatchery}_g = & p^\textrm{NOB}_{g-1} \times \left(\bar{z}^\textrm{natural}_{g-1} + [\bar{z}^{\prime\textrm{natural}}_{g-1}(\theta^\textrm{hatchery}) - \bar{z}^\textrm{natural}_{g-1}] h^2\right) +\\ & (1 - p^\textrm{NOB}_{g-1}) \times \left(\bar{z}^\textrm{hatchery}_{g-1} + [\bar{z}^{\prime\textrm{hatchery}}_{g-1}(\theta^\textrm{hatchery}) - \bar{z}^\textrm{hatchery}_{g-1}] h^2\right) \end{align}

where pNOB=NOB/(NOB+HOB)p^\textrm{NOB} = \textrm{NOB}/(\textrm{NOB} + \textrm{HOB}).

The fitness variance ω2\omega^2 and phenotype variance σ2\sigma^2 are identical in the two environments.

The mean fitness of generation gg in the natural environment is then:

Wgnatural=exp((zgnaturalθnatural)22(ω2+σ2)) \bar{W}^\textrm{natural}_g = \exp\left(\dfrac{-(\bar{z}^\textrm{natural}_g-\theta^\textrm{natural})^2}{2(\omega^2+\sigma^2)}\right)

Mixed brood-year return

If a mixed-brood year return in year yy across several ages aa produces the smolt cohort in year y+1y+1, then the mean trait value in the progeny is calculated from a weighted average by brood year and age class fecundity:

zy+1natural=apy,aNOS×(zya+1natural+[zya+1natural(θnatural)zya+1natural]h2)+apy,aHOSeff×(zya+1hatchery+[zya+1hatchery(θnatural)zya+1hatchery]h2)\begin{align} \bar{z}^\textrm{natural}_{y+1} = & \sum_a p^\textrm{NOS}_{y,a} \times \left(\bar{z}^\textrm{natural}_{y-a+1} + [\bar{z}^{\prime\textrm{natural}}_{y-a+1}(\theta^\textrm{natural}) - \bar{z}^\textrm{natural}_{y-a+1}] h^2\right) +\\ & \sum_a p^\textrm{HOSeff}_{y,a} \times \left(\bar{z}^\textrm{hatchery}_{y-a+1} + [\bar{z}^{\prime\textrm{hatchery}}_{y-a+1}(\theta^\textrm{natural}) - \bar{z}^\textrm{hatchery}_{y-a+1}] h^2\right) \end{align}

zy+1hatchery=apy,aNOB×(zya+1natural+[zya+1natural(θhatchery)zya+1natural]h2)+apy,aHOB×(zya+1hatchery+[zya+1hatchery(θhatchery)zya+1hatchery]h2)\begin{align} \bar{z}^\textrm{hatchery}_{y+1} = & \sum_a p^\textrm{NOB}_{y,a} \times \left(\bar{z}^\textrm{natural}_{y-a+1} + [\bar{z}^{\prime\textrm{natural}}_{y-a+1}(\theta^\textrm{hatchery}) - \bar{z}^\textrm{natural}_{y-a+1}] h^2\right) +\\ & \sum_a p^\textrm{HOB}_{y,a} \times \left(\bar{z}^\textrm{hatchery}_{y-a+1} + [\bar{z}^{\prime\textrm{hatchery}}_{y-a+1}(\theta^\textrm{hatchery}) - \bar{z}^\textrm{hatchery}_{y-a+1}] h^2\right) \end{align}

where

py,aNOS=Feca×NOSy,aaFeca(NOSy,a+γ×HOSy,a)p^\textrm{NOS}_{y,a} = \dfrac{\textrm{Fec}_a \times \textrm{NOS}_{y,a}}{\sum_a\textrm{Fec}_a(\textrm{NOS}_{y,a} + \gamma \times \textrm{HOS}_{y,a})}

py,aHOSeff=Feca×γ×HOSy,aaFeca(NOSy,a+γ×HOSy,a)p^\textrm{HOSeff}_{y,a} = \dfrac{\textrm{Fec}_a \times \gamma \times \textrm{HOS}_{y,a}}{\sum_a\textrm{Fec}_a(\textrm{NOS}_{y,a} + \gamma \times \textrm{HOS}_{y,a})}

py,aNOB=Fecabrood×NOBy,aaFecabrood(NOBy,a+HOBy,a+Broody,aimport)p^\textrm{NOB}_{y,a} = \dfrac{\textrm{Fec}^\textrm{brood}_a \times \textrm{NOB}_{y,a}}{\sum_a\textrm{Fec}^\textrm{brood}_a(\textrm{NOB}_{y,a} + \textrm{HOB}_{y,a} + \textrm{Brood}^\textrm{import}_{y,a})}

py,aHOB=Fecabrood×(HOBy,a+Broody,aimport)aFecabrood(NOBy,a+HOBy,a+Broody,aimport)p^\textrm{HOB}_{y,a} = \dfrac{\textrm{Fec}^\textrm{brood}_a \times (\textrm{HOB}_{y,a} + \textrm{Brood}^\textrm{import}_{y,a})}{\sum_a\textrm{Fec}^\textrm{brood}_a(\textrm{NOB}_{y,a} + \textrm{HOB}_{y,a} + \textrm{Brood}^\textrm{import}_{y,a})}

Effective proportions, i.e., weighting by age-class fecundity, accounts for older age classes that are more fecund and more likely to contribute to the production of next cohort.

Fitness loss

Fitness can reduce survival in the egg, fry, and immature life stages.

If no habitat model is used, then the egg-fry survival is reduced by the fitness loss function:

Fryy+1NOS=EggyNOS×(Wynat.)eggFryy+1HOS=EggyHOS×(Wynat.)egg\begin{align} \textrm{Fry}^\textrm{NOS}_{y+1} &= \textrm{Egg}^\textrm{NOS}_y \times (W^\textrm{nat.}_y)^{\ell_\textrm{egg}}\\ \textrm{Fry}^\textrm{HOS}_{y+1} &= \textrm{Egg}^\textrm{HOS}_y \times (W^\textrm{nat.}_y)^{\ell_\textrm{egg}} \end{align}

and the smolt production function is adjusted by loss in productivity and capacity, with α\alpha and β\beta adjusted accordingly as:

Smolty+1NOS=αy+1×Fryy+1NOS1+βy+1(Fryy+1NOS+Fryy+1HOS+ny+1sub)Smolty+1HOS=αy+1×Fryy+1HOS1+βy+1(Fryy+1NOS+Fryy+1HOS+ny+1sub)\begin{align} \textrm{Smolt}^\textrm{NOS}_{y+1} &= \frac{\alpha'_{y+1} \times \textrm{Fry}^\textrm{NOS}_{y+1}}{1 + \beta'_{y+1}(\textrm{Fry}^\textrm{NOS}_{y+1} + \textrm{Fry}^\textrm{HOS}_{y+1} + n^\textrm{sub}_{y+1})}\\ \textrm{Smolt}^\textrm{HOS}_{y+1} &= \frac{\alpha'_{y+1} \times \textrm{Fry}^\textrm{HOS}_{y+1}}{1 + \beta'_{y+1}(\textrm{Fry}^\textrm{NOS}_{y+1} + \textrm{Fry}^\textrm{HOS}_{y+1} + n^\textrm{sub}_{y+1})} \end{align}

with αy+1=(Wynat.)fry×κ/ϕ\alpha'_{y+1} = (W^\textrm{nat.}_y)^{\ell_\textrm{fry}}\times\kappa/\phi and βy+1=α/(Cegg-smolt×(Wynat.)fry)\beta'_{y+1} = \alpha/(C_\textrm{egg-smolt} \times (W^\textrm{nat.}_y)^{\ell_\textrm{fry}}).

With the Ricker density-dependent survival, the beta parameter is adjusted with βy*=1/[Smax×(Wynat.)fry]\beta^*_y = 1/[S_\textrm{max} \times (W^\textrm{nat.}_y)^{\ell_\textrm{fry}}].

In the marine life stage, the increase in natural mortality is:

My,aNOS=log(exp(My,abase,NOS)×(Wyanat.)juv) M^\textrm{NOS}_{y,a} = -\log(\exp(-M^\textrm{base,NOS}_{y,a}) \times (W^\textrm{nat.}_{y-a})^{\ell_\textrm{juv}})

In the marine environment, age-specific natural survival is reduced proportional to the fitness loss term and modeled as a cohort effect.

Parameter i\ell_i is the proportion of the fitness loss apportioned to life stage ii (either egg, fry, or juvenile-marine), with ii=1\sum_i \ell_i = 1.

If habitat variables are modeled, then the egg and fry fitness losses adjust the productivity and capacity of the corresponding life stage:

Pyegg-fry=Pegg-fry×(Wynat.)eggPyfry-smolt=Pfry-smolt×(Wynat.)fry\begin{align} P^\textrm{egg-fry}_y &= P^\textrm{egg-fry} \times (W^\textrm{nat.}_y)^{\ell_\textrm{egg}}\\ P^\textrm{fry-smolt}_y &= P^\textrm{fry-smolt} \times (W^\textrm{nat.}_y)^{\ell_\textrm{fry}} \end{align}

PNI

PNI (proportionate natural influence) is an approximation of the rate of gene flow from the hatchery to the natural environment, calculated for the progeny in year y+1y+1 from the parental composition of year yy:

PNIy+1=apy,aNOBapy,aNOB+apy,aHOSeff \textrm{PNI}_{y+1} = \dfrac{\sum_a p^{\textrm{NOB}}_{y,a}}{\sum_a p^{\textrm{NOB}}_{y,a} + \sum_a p^{\textrm{HOSeff}}_{y,a}}

Generally, a combination of minimizing hatchery releases, increasing natural broodtake, and reducing the number hatchery origin spawners maintains high PNI, i.e., low rate of gene flow from the hatchery to natural environment.

If there is no natural origin broodtake, i.e., all brood is imported, then PNI is calculated with equation 6 of Withler et al. 2018:

PNIy+1=h2h2+(1h2+ω2)apy,aHOSeff \textrm{PNI}_{y+1} = \dfrac{h^2}{h^2 + (1 - h^2 + \omega^2) \sum_a p^{\textrm{HOSeff}}_{y,a}}

Wild salmon

With single brood-year returns, the proportion of wild salmon, natural origin spawners whose parents were also natural spawners, can be calculated as

pgWILD=(1pgHOScensus)×(1pg1HOScensus)2(1pg1HOScensus)2+2γ×pg1HOScensus(1pg1HOScensus)+γ2(pg1HOScensus)2 p^\textrm{WILD}_g = (1 - p^\textrm{HOScensus}_g) \times \dfrac{(1 - p^\textrm{HOScensus}_{g-1})^2} {(1 - p^\textrm{HOScensus}_{g-1})^2 + 2 \gamma \times p^\textrm{HOScensus}_{g-1}(1 - p^\textrm{HOScensus}_{g-1}) + \gamma^2 (p^\textrm{HOScensus}_{g-1})^2}

where pHOScensus=HOS/(HOS+NOS)p^\textrm{HOScensus} = \textrm{HOS}/(\textrm{HOS} + \textrm{NOS}).

The first term is the proportion of natural spawners in the current generation gg.

The ratio comprising the second term discounts the proportion of the current generation to include natural spawners whose parents were both natural spawners. Assuming non-assortative mating, the three terms in the denominator gives the composition of generation gg whose parents who are both natural origin, mixed origin (one parent in natural origin and the other is hatchery origin), and both hatchery origin.

To generalize for mixed-brood year return, we calculate the probability weighted across brood-years and age class fecundity:

pyWILD=aNOSy,aa(NOSy,a+HOSy,a)×(apya,aNOScensus)2(apya,aNOScensus)2+2γ×(apya,aNOScensus)(apya,aHOScensus)+γ2(apya,aHOScensus)2 p^\textrm{WILD}_y = \sum_a \dfrac{\textrm{NOS}_{y,a}}{\sum_{a'}(\textrm{NOS}_{y,a'} + \textrm{HOS}_{y,a'})} \times \dfrac{(\sum_{a'} p^\textrm{NOScensus}_{y-a,a'})^2} {(\sum_{a'} p^\textrm{NOScensus}_{y-a,a'})^2 + 2 \gamma \times (\sum_{a'}p^\textrm{NOScensus}_{y-a,a'})(\sum_{a'}p^\textrm{HOScensus}_{y-a,a'}) + \gamma^2 (\sum_{a'}p^\textrm{HOScensus}_{y-a,a'})^2}

where

py,aNOScensus=Feca×NOSy,aaFeca(NOSy,a+HOSy,a)p^\textrm{NOScensus}_{y,a} = \dfrac{\textrm{Fec}_a \times \textrm{NOS}_{y,a}}{\sum_a{\textrm{Fec}_a (\textrm{NOS}_{y,a}} + \textrm{HOS}_{y,a})}

py,aHOScensus=Feca×HOSy,aaFeca(NOSy,a+HOSy,a)p^\textrm{HOScensus}_{y,a} = \dfrac{\textrm{Fec}_a \times \textrm{HOS}_{y,a}}{\sum_a{\textrm{Fec}_a (\textrm{NOS}_{y,a}} + \textrm{HOS}_{y,a})}

The probability of finding a wild salmon in year yy is the sum of probabilities of finding a wild salmon over all ages. For each age aa, the first ratio is the probability of finding a natural spawner in year yy. The second ratio is the probability of mating success from two parental natural spawners in year yay-a using a Punnett square, assuming non-assortative mating across age and origin. The summation across dummy age variable aa' calculates the total proportion of spawners in a given year.

Effective proportions, i.e., weighting by age-class fecundity, in the parental composition accounts for older age classes that are more fecund and more likely to contribute to the production of offspring.

Mark-selective fishing

If the mark rate mm of hatchery fish is greater than zero, then mark-selective fishing is implemented for both the pre-terminal and terminal fisheries. The mark rate is a proxy for retention and the harvest rate uharvestu^\textrm{harvest} corresponds to the ratio of the kept catch and abundance. The exploitation rate uexploitu^\textrm{exploit} is calculated from kept catch and dead releases. Exploitation rates differ between hatchery and natural origin fish because there is no retention of the latter.

Let the instantaneous fishing mortality for kept catch and released catch be

Fkept=mEFrel.=(1m)δE\begin{align} F^\textrm{kept} &= mE\\ F^\textrm{rel.} &= (1 - m)\delta E \end{align}

where δ\delta is the proportion of released fish that die.

EE is an index of fishing effort, also referred to as the encounter rate by the fishery, that links together FkeptF^\textrm{kept} and Frel.F^\textrm{rel.}. Intuitively, fishing effort can increase in a mark-selective fishery compared to a non-selective fishery. For example, if the mark rate is 20 percent, then the fishing effort could be 500 percent higher than in a non-selective fishery in order to attain the kept quota or bag limit. Additional catch and release mortality then occurs for un-marked fish, according to δ\delta.

In the pre-terminal (PT\textrm{PT}) fishery, EE is solved to satisfy the following equation for hatchery fish:

uharvest,HOS,PT=aKy,aHOS,PTavaPTNy,ajuv,HOS u^\textrm{harvest,HOS,PT} = \dfrac{\sum_aK^\textrm{HOS,PT}_{y,a}}{\sum_a v^\textrm{PT}_a N^\textrm{juv,HOS}_{y,a}}

where the kept catch KK is

Ky,aHOS,PT=Fykept,PTFykept,PT+Fyrel,PT(1exp(vaPT[Fkept,PT+Frel,PT]))Ny,ajuv,HOSK^\textrm{HOS,PT}_{y,a} = \dfrac{F^\textrm{kept,PT}_y}{F^\textrm{kept,PT}_y + F^\textrm{rel,PT}_y}\left(1 - \exp(-v^\textrm{PT}_a[F^\textrm{kept,PT} + F^\textrm{rel,PT}])\right)N^\textrm{juv,HOS}_{y,a}.

The exploitation rate for natural origin fish is calculated from dead discards. The exploitation rate for hatchery origin fish is calculated from kept catch and dead discards:

uyexploit,NOS,PT=a(1exp(vaFyrel.,PT))Ny,ajuv,NOSavaPTNy,ajuv,NOSuyexploit,HOS,PT=a(1exp(va[Fykept,PT+Fyrel.,PT]))Ny,ajuv,HOSavaPTNy,ajuv,HOS\begin{align} u^\textrm{exploit,NOS,PT}_y &= \dfrac{\sum_a (1 - \exp(-v_a F^\textrm{rel.,PT}_y))N^\textrm{juv,NOS}_{y,a}}{\sum_a v^\textrm{PT}_a N^\textrm{juv,NOS}_{y,a}}\\ u^\textrm{exploit,HOS,PT}_y &= \dfrac{\sum_a (1 - \exp(-v_a[F^\textrm{kept,PT}_y + F^\textrm{rel.,PT}_y]))N^\textrm{juv,HOS}_{y,a}}{\sum_a v^\textrm{PT}_a N^\textrm{juv,HOS}_{y,a}} \end{align}

Similarly, in the terminal fishery, the fishing effort satisfies the equation

uharvest,HOS,T=aKy,aHOS,TavaTHORy,a u^\textrm{harvest,HOS,T} = \dfrac{\sum_aK^\textrm{HOS,T}_{y,a}}{\sum_a v^\textrm{T}_a \textrm{HOR}_{y,a}}

with the corresponding exploitation rates:

uyexploit,NOS,T=a(1exp(vaFyrel,T))NORy,aavaTNORy,auyexploit,HOS,T=a(1exp(va[Fykept,T+Fyrel.,T]))HORy,aavaTHORy,a\begin{align} u^\textrm{exploit,NOS,T}_y &= \dfrac{\sum_a (1 - \exp(-v_a F^\textrm{rel,T}_y))\textrm{NOR}_{y,a}}{\sum_a v^\textrm{T}_a \textrm{NOR}_{y,a}}\\ u^\textrm{exploit,HOS,T}_y &= \dfrac{\sum_a (1 - \exp(-v_a[F^\textrm{kept,T}_y + F^\textrm{rel.,T}_y]))\textrm{HOR}_{y,a}}{\sum_a v^\textrm{T}_a \textrm{HOR}_{y,a}} \end{align}